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Abstract

A series of Mach 5 to 7 freejet tests of a Rocket Based

Combined Cycle (RBCC) engine were conducted at the
NASA Lewis Research Center (LeRC) Hypersonic Tunnel

Facility (HTF). This paper describes the configuration

and operation of the HTF and the RBCC engine during

these tests. A number of facility support systems are
described which were added or modified to enhance the

HTF test capability for conducting this experiment. The

unfueled aerodynamic performance of the RBCC engine

flowpath is also presented and compared to sub-scale test

results previously obtained in the NASA LeRC lxl

Supersonic Wind Tunnel (SWT) and to Computational

Fluid Dynamic (CFD) analysis results. This test program
demonstrated a successful configuration of the HTF for

facility starting and operation with a generic RBCC type

engine and an increased range of facility operating
conditions. The ability of sub-scale testing and CFD

analysis to predict flowpath performance was also shown.

The HTF is a freejet, blowdown propulsion test

facility that can simulate up to Mach 7 flight conditions

with true air composition. Mach 5, 6, and 7 facility nozzles
are available, each with an exit diameter of 42 in. This

combination of clean air, large scale, and Mach 7 cap-

abilities is unique to the HTF. This RBCC engine study is

the first engine test program conducted at the HTF since
1974.

Introduction

Rocket Based Combined Cycle engines combine the

high thrust-to-weight ratio of rockets with the high specific

impulse of ramjets in a single integrated propulsion system

that is capable of generating thrust from sea-level-static to

high Mach number conditions. The "strutjet" tested at the
NASA Lewis HTF is one example of this engine concept

which is being developed cooperatively by a government

and industry team.

"Copyright © 1997 by the American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States under
Title 17,U.S. Code. The U.S. Government has a royalty-free license to
exercise all rights underthe copyright claimed herein for Governmental
Purposes. All other rights are reserved by the copyright owner."

The strut jet is an ejector ramjet engine in which small,
fuel rich rocket chambers are embedded into the trailing

edges of the inlet compression struts. The engine operates
as an ejector ramjet from takeoff to about Mach 3. At low

Mach numbers, entrained air is completely consumed by
the fuel rich rocket exhaust. As freestream Mach number

and air flow increase, additional fuel is introduced to
maintain the stoichiometric combustion of all available

oxygen. At approximately Mach 3 the strut rockets are
turned off. Above Mach 3 the engine operates as athermally

choked ramjet, and then transitions to supersonic com-

bustion (scramjet) mode. For space launch applications,
the rockets are re-ignited at a Mach number beyond which

alrbreathing propulsion becomes impractical. Further

details of this engine concept are available in Ref. 1.

The purpose of this paper is to show the successful

integration of a generic RBCC type engine into the HTF,

the increased operating range achieved by the HTF, and

the high fidelity of previously completed subscale and
CFD simulations of this engine configuration as

demonstrated by the HTF unfueled engine data.

Facility Description

Gener_
The HTF is a blowdown, non-vitiated freejet test

facility capable of testing large scale propulsion systems

at Mach numbers up to 7. Major features of the facility

are shown in Fig. 1. Nitrogen from the GN 2 rail car is

supplied at the desired test pressure to the magnetic

induction graphite storage heater where it is heated to a

temperature somewhat above the desired test total

temperature. This GN 2 then passes out of the heater bed
into the hot train section where ambient temperature GO 2

and GN 2are added to bring the flow to true air composition
and the desired test total temperature. This flow then goes

through a converging-diverging facility nozzle which

expands the flow to supersonic conditions. The test flow

then passes through and around the engine mounted on the
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thrust stand in the test cabin and enters the diffuser. The

test cabin and diffuser are kept at altitude through the use

of a steam ejector mounted in the diffuser duct which

exhausts all of the test flow to atmosphere. Additional

facility description is contained in Refs. 2 and 3.

GN 2 Heater
Figure 2 is a cutaway of the graphite storage heater. The

heater consists of a stack of 15 cylindrical graphite blocks 6

ft in diameter and 2 ft in height, with 1100 holes drilled

through each block to distribute the GN 2 flow. Hexagonal

graphite block keys assure the proper alignment of the
drilled holes which increase in diameter from the bottom

block to the top block to maintain a constant velocity and to
minimize the pressure drop through the stack. Electric

current from a 180 Hz, single phase, 750 V supply (3 MW)
is passed through water cooled copper induction coils to

induce a magnetically coupled current in the outer diameter

of the graphite blocks to a depth of about 4 in. The graphite
blocks are then heated as a result of their resistance to the

induced current. The heat induced on the outer edge of the

blocks then soaks by conduction to the center of the blocks.
The blocks are heated at a maxi-mum rate of 50 °Fhar in order

to reduce thermal stresses. The stack of blocks is insulated

with a 7 in. thick layer of graphite felt and a 2 in. thick silicon

carbide tile shell to reduce heat loss to the outer components

and the water cooled pressure vessel. The heater core
assembly is con-tained in awater cooled carbon steel pressure

vessel rated for 1200 psig. The maximum heater outlet
conditions are 4500 °F and 130 lb/s.

Hot Train Components

After the heated GN 2 exits the heater bed it enters
what is referred to as the "hot train," consisting of the hot

tee, the radiation shutter valve, the diluent injection flange,

the film cooling flange, the mixer and the facility nozzle.

This assembly is shown in Fig. 3. These components up to
the nozzle have an inside diameter of-18 in. and are all

water cooled. There are currently three water cooled
facility nozzles which expand the flow to Mach 5, 6, or 7.
Each nozzle has a 42 in. exit diameter.

Test Cabin/Thrust Stand

The test chamber is a domed cylindrical structure

25 ft in diameter and -20 ft in height made of high carbon

steel. The chamber is equipped with a 17 in. diameter vent

valve used to bring the chamber quickly back to atmospheric

pressure. The facility nozzle penetrates the test cabin wall

~8-1/2 fi and the supersonic diffuser penetrates the test

cabin wall -6-1/2 ft. Each penetration is sealed with an

inflatable rubber seal. The engine is mounted on an over-

head translating thrust stand. The engine can be translated

up to 30 in. along the freejet axis and can be hydraulically

pivoted to a 5° angle of attack. The engine can also be

pivoted out of the flow stream in order to change out the

facility nozzle. The thrust stand was designed to handle a

test article of up to 16,000 lb weight and 8,500 lb thrust.

Diffuser/Steam Ejector System

The exhaust system consists of a water cooled super-
sonic diffuser, a heat sink subsonic diffuser, a spray

cooler, and a single stage steam ejector. The supersonic

diffuser consists of a translatable, water cooled, 55 in.

diameter inlet collection cone followed by a constant

diameter section 30 ft in length and 43 in. in diameter. The

subsonic diffuser incorporates water spray nozzles

designed to cool the exhaust gases to saturation tempera-

ture. The single stage steam ejector uses a coaxial nozzle

and consumes 500 lb/s of steam at 130 psig. Steam is

supplied to the ejector through a 30 in. pipe from five

500 psig steam accumulators with a combined useful
capacity of 144,500 lbs of steam. The accumulators are

located -3,000 ft from the HTF..

GN 2 Supply System
GN 2 is supplied to the heater bed, to the diluent

mixing section, and for general facility use from a high

pressure railroad tank car. This vessel has a capacity of

663,000 SCF at its rated pressure of 4500 psig. However,

the system is currently operated at a maximum of 3300 psig

due to limitations in the feed piping system to the facility.

The GN 2 vessel is charged from a 66,000 SCFH LN 2
vaporizer located near the facility.

GO2 Supply System
GO 2 is supplied to the diluent mixing section down-

stream of the heater from six high pressure bottles mounted

next to the steam ejector/diffuser. These bottles have a

combined capacity of 386,000 SCF at their rated pressure

of 2212 psig. The GO 2 bottles are charged from a 20,000

SCFH LO 2 vaporizer located adjacent to the bottles.

JP-10 Supply System

JP-10 is supplied to the engine forward and aft fuel

injection blocks from either of two 1500 psig GN 2 pres-
surized supply tanks. The first tank has acapacity of 20 gal

and operates at ambient temperature, while the second

tank has a capacity of 10 gal and operates at temperatures

up to 450 °F. The JP-10 in the high temperature tank is
heated using an electrical resistance immersion heater. A

recirculation pump is used to keep the heated JP-10 from

stratifying and to keep the engine feed lines at temperature.

Heated JP-10 was not used in this phase of the RBCC test

program. Fuel flow rate is measured using venturi

flow-meters and is controlled using hydraulically

operated globe valves. A simplified schematic of this
system is shown in Fig. 4(a).
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Silane Supply System

A pyrophoric mixture of 20 percent silane (Sill4) and

80 percent H 2 by volume is supplied to the forward fuel

injection block as an ignition source for the JP-10. The

silane/H 2mixture flow is controlled by a sonic venturi and
flowrate is calculated based on upstream conditions. The

silane/H 2 mixture is supplied from a pair of 250 SCF
bottles located outside the test cabin. A simplified schematic

of this system is shown in Fig. 4(b).

Engine Water Cooling Systems

The engine leading edges are water cooled using two

20 gal, 1000 psig pressurized supply tanks connected in

parallel. The exit from the engine leading edges is throttled
with a hand valve to maintain 250 psig backpressure during

operation to help prevent boiling. The precompression plate
in front of the engine inlet and the precompression plate

support struts have water cooled leading edges which are

supplied from a facility 400 psig centrifugal pump.

Data Systems

The HTF is equipped with 3 different data systems

serving 3 different applications. The data recording and

display system for all of the facility related data parameters
is an ESCORT D system which scans a maximum of 527

channels at a rate of 1 sample/sec on all channels. Addi-

tionally, there is a 64 channel MassComp high speed data

system capable of scanning at an aggregate rate of 330,000

samples/sec. This system was set to sample all 64 channels
20 times/sec for these tests. There is also a 192 channel

Electrically Scanned Pressure (ESP) unit that is used at

HTF which samples engine static pressures at a rate of

~17 samples/sec across all channels.

Test Article Description

General

The model isa heat sink type strutjet engine constructed

primarily of 2 in. thick Oxygen Free Electronic (OFE)

grade copper plates. The engine is shown schematically in

Fig. 5. The inlet is a fixed geometry design which incor-

porates two windscreen/isolator struts that divide the inlet
into 3 channels. Behind each windscreen/isolator strut is

a forward fuel injection block followed by an aft fuel

injection block which also houses 3 small rockets. The top
surface of the diverging nozzle section is made up of

hinged sections which allow the nozzle expansion angle to

be changed between tests. All of the different sections used

to construct the engine are sealed from leakage using red

silicon o-rings compressed between the sections. A

precompression plate is mounted in front of the inlet to

partially simulate a vehicle forebody in order to give the
proper engine inlet conditions. The leading edges of the

inlet, struts, andprecompression plate are all water cooled.

Precompression Plate

Prior to entering the engine, the freejet air flow

encounters a forebody simulation precompression plate.

This plate is 28 in. long, 25 in. wide at the upstream end

and tapers back to a width of 9 in. at the engine inlet. The

plate length was selected to place the plate bow shock at

the engine cowl leading edge at Mach 6. The plate is at an
8° angle to the flow, matching the inlet top wall angle, and

the trailing edge of the plate is in line with the inlet top

wall. A gap of-1/4 in. allows for thermal growth of the
model and for deflection of thrust stand mounts. An inter-

locking, non-contacting seal was installed between the

precompression plate and the inlet top wall to prevent

excessive flow spillage. The precompression plate can be
mounted with a 1 in. offset to the inlet top wall to provide

boundary layer diversion, but this was not done in this test

program. The precompression plate is constructed of I in.
OFE copper and is supported by two carbon steel struts.

The carbon steel support struts are constructed with remov-

able water cooled copper leading edges.

Inlet

The freejet air flow, after passing through the pre-

compression plate bow shock, passes into the engine inlet.
The inlet consists of an 8 ° compressive top wall, 2 compres-

sive struts, a flat bottom (cowl) surface, and 2 flat side

walls. The cowl leading edge is located at the maximum

thickness point along the inlet struts, 12.7 in. behind the

top wall leading edge. The inlet flow is compressed by the

8 ° ramp of the precompression plate and inlet top wall,

then by the strut leading edge sections. There is no internal

contraction downstream of the cowl leading edge. Although

the cross sectional geometry varies, the net cross sectional
area is constant. The convergence between the cowl and

top wall panels is compensated for by a reduction in strut
thickness. This lack of internal contraction enables the
inlet to self-start at a Mach number below Mach 4.

Leading Edges
The leading edges of the inlet (top wall, cowl, side

walls, and struts) are water cooled using 1000 psig water

supplied from two GN 2 pressurized tanks in parallel. The
leading edges were formed by electron beam welding a
0.200 in. outside diameter, 0.070 in. wall thickness OFE

copper tube into a recess machined into each leading

edge. The weld areas were then finish machined to create a
smooth, continuous surface. All of the engine leading edges

are removable for repair or replacement. The leading edges

of the precompression plate and the two precompression

plate support struts are water cooled using 400 psig water

from a facih'ty water cooling supply pump. The leading edges of

the two support struts for the precompression plate are
water cooled through 0.25 in. inside diameter, 0.100 in. wall

thickness passages drilled into the copper leading edge inserts.
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Nozzle

The nozzle section is made up of three manually

adjustable top wall sections along with the 2 flat side walls

and the bottom (cowl) plate. The top wall is made up of
two 12 in. long sections and one 19.65 in. section. These

sections are adjustable through the use of jack screws
located above the model. The first two sections were con-

figured with an expansion angle of 6° for these tests. The

last section was set at a expansion angle of 10.2 ° to give

a 10 in. nozzle exit height.

Forward Fuel Blocks

The forward fuel blocks are constructed of stainless

steel and are 3.75 in. long and 0.90 in. wide. There are

three fuel manifolds drilled into each block for distributing
the fuel into the center and side flow channels. The

forward fuel manifold has two 0.040 in. diameter injection

orifices on each side for a pyrophoric mixture of 20 percent

silane (Sill4) gas and 80 percent hydrogen gas used as the
engine pilot. The second and third manifolds are configured
with two 0.024 in. diameter injection orifices on each side

for liquid JP- 10 fuel. The JP- 10 is vaporized and ignited by

the flame from the silane/H 2 mixture. Only the first of the
two JP- 10 manifolds was used for these tests. The forward

and aft fuel blocks are bolted together and inserted into the

model from the top wall where they are held at the bottom

in a machined slot and at the top by a clamp secured to the

side walls. The fuel distribution can be changed by welding

shut the existing orifices and redrilling new orifices. The

fuel block assembly is shown in Fig. 6.

Aft Fuel Blocks

The aft fuel blocks are constructed of OFE copper

and are 7.00 in. long and 0.90 in. wide. The aft fuel blocks

contain three gelled propellant Mono-methyl-hydrazine/

Inhibited Red Fuming Nitric Acid (MMH/IRFNA) rocket

chambers and two JP-10 injection "shower heads" per

block. The platelet injector fed rocket chambers operate at

2500 psia and have a 0.33 in. diameter throat, generating

330 lb of thrust per chamber. The rocket chambers are

water cooled from a 4000 psig supply. As the strut rockets

were not used during this phase of the test program, two aft
fuel blocks with the same outside dimensions but without

the embedded rocket engines were used.

The JP-10 "shower heads" are trapezoidal stainless
steel blocks mounted on the downstream face of the aft

fuel blocks between the rocket nozzles. These injectors

have two 0.024 in. diameter orifices on the top and bottom

angled surfaces, and one 0.024 in. diameter orifice on each

of the two side faces of the injector. These injectors are fed

from fuel lines passing through the aft fuel block to the

forward fuel block, where they are fed from a common

supply manifold. The fuel distribution from the aft JP-10

injectors is also changed by welding shut the existing

orifices and redrilling new orifices.

Instr0mentation

The engine instrumentation consists primarily of 82

static pressure taps located along the top wall, side walls,

and rear surfaces of the engine and along the top surface of

the precompression plate. Additional static pressure taps

are included in the engine shrouding to determine approx-
imate thrust loads for those surfaces. Other measurements

include the engine thrust and 5 combustor wall temper-

atures using chromel/alumel (type K) thermocouples.

Test Article Installation

Engine Mounting

The engine assembly is suspended from the overhead

thrust stand using two l0 in. I-beams. The two support
I-beams are in turn mounted to a box frame which is then
bolted to the thrust stand. The forward I-beam is in the

vertical position and mounts rigidly to the engine sidewalls

near the rear of the inlet above the top wall. The rear

I-beam angles back from approximately the midpoint of

the engine up at the box frame to a hinged joint located half

way along the nozzle section. The engine hangs -3 ft below
the bottom of the thrust stand assembly. An isometric view

of the mounted engine is shown in Fig. 7.

Position in Facility Nozzle Flow
The inside diameter of the exit of each of the 3 HTF

facility nozzles is -42 in. Based on previous nozzle call-
4brations, a uniform core flow of at least 30 in. exists for each

nozzle used for this program. The engine is mounted such

that the leading edge of the precompression plate is 5.8 in.

above the nozzle centerline. In this position, the leading edge
of the cowl is 6.2 in. below the nozzle center-line. With this

geometry, auniform core flow of 27.5 in. diameteris required,

which is less than the uniform core available. Thus, boundary

layer and nozzle distortion effects do not have to be considered

when analyzing the test results.

Shrouding

To protect the instrumentation and equipment located

immediately above the engine from heat and "wind"

damage, shrouding was installed from the top of the engine

up -23 in. This shrouding is constructed of 1/4 in. copper

plate in the front and 1/8 in. copper plate in the rear. The

shrouding is tapered in the front and has a solid copper

nose piece. At the rear of the engine the shrouding follows

the contour of the engine. The shrouding is sealed to the

top of the engine using 1/4 in. ceramic rope held in place

by a thin strip of steel screwed into the top of the model.

The shrouding assembly is visible in Fig. 8.
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Facility Starting Appliances
To facilitate starting of both the tunnel and the engine,

an aerodynamic starting "appliance" was installed. This

hardware consists of upper and lower semicircular sections
that act as an extension of the facility diffuser around the

engine. The sections are constructed of 1/4 in. carbon steel

plate rolled to match the diffuser entrance diameter. The
lower section is a single piece 75 in. long mounted to a
frame of structural steel which is in turn mounted to both

the diffuser entrance and the floor. The upper section is cut

into three pieces to facilitate disassembly for access to the

engine. These 3 pieces are bolted to each other and to the

lower section. When fully assembled, the "appliance"

comes up from the diffuser to just behind the engine inlet

as shown in Fig. 9. The installed engine, shrouding, and

precompression plate flow blockage is -28 percent.

Precompression Plate Mounting

The precompression plate support struts are mounted
to a 1 in. thick carbon steel plate. This plate is then mounted

to a support structure cantilevered from a non-
metric section of the thrust stand assembly. Any loading

applied to the precompression plate is not a part of the

engine thrust measurement. A 1 in. thick carbon steel

spacer is placed between the precompression plate mount-

ing plate and the support structure to lower the plate in line
with the inlet. This plate can be removed to divert the pre-

compression plate boundary layer from the engine inlet.

Test Sequencin_

Tunnel Operations
Prior to facility operation, the heater and supporting

systems are energized and the heater is brought up to the

required operating temperature. The steam plant is brought
on line and all accumulators are charged to 500 psig. The

cooling water system, main nitrogen and oxygen systems,

hydraulic systems, control systems, and data systems are

set up and calibrated. The steam line is preheated using

steam supplied directly from the boilers. A 2.5 psig purge

is present on the graphite heater at all times. Immediately

prior to facility operation, the steam line is brought up to

200 psig at the ejector supply station. The chamber vent
valve is then closed, the cooling water flow is established,

a 2.5 psig purge is placed on the hot train components, and

the radiation shutter valve is opened. The main steam

supply valve is then opened and the ejector flow is
established. When the test chamber pressure drops below

3 to 4 psia, the nozzle pressure is then slowly ramped up

to the test operating point and the spray cooler is brought
on line. The initial portion of the facility ramp is done

without oxygen, using ambient temperature diluent nitro-

gen to control the nozzle temperature. Oxygen is then

brought on during the final portion of the nozzle pressure

ramp, at which time the ambient temperature nitrogen is

reduced. The facility control system then balances hot

nitrogen, ambient temperature nitrogen and oxygen flows

to supply "air" at the appropriate test temperature, pressure,
and composition. During the course of the test run the

storage heater temperature drops several hundred degrees,

requiring the controls to constantly adjust the flow mixture.
At the end of the test, the oxygen flow is shut off and

replaced with ambient temperature nitrogen flow as the

nozzle pressure is slowly ramped back down to zero. The

spray cooler is then shut off, the heater nitrogen purge is
re-established, and the radiation shutter valve is closed.

Finally, the steam ejector is shut off and chamber vent

valve opened.

Engine Operations
After the facility has ramped up to the test condition,

a dwell time of -3 sec is allowed for the facility nozzle

inlet pressure and temperature to steady out before begin-
ning engine operations. The initial tests at each Mach
Number were run without fuel to determine engine/tunnel

starting characteristics and aerodynamic drag. The next
series of tests were run with fuel injected from the forward

fuel blocks only. In general, the Silane/H 2 mixture was

introduced 1 secpriortoinitiatingthe forward JP-10flow.
The JP- 10 was started at a low flow rate, and then increased

in 2.5 to 4 sec steps up to a point beyond the estimated
unstart limit. After the unstart limit for the forward fueling

stations was thus determined, a similar series of tests were

run to determine the unstart limit of the engine with JP- 10

flow from the aft fuel blocks. The forward JP-10/Silane/

H 2 flow rates were set at 75 to 80 percent of their unstart
limit and then aft JP- 10 flow was initiated 2.5 to 4 sec later

at a low level and increased in 2.5 to 4 sec steps up to a

point beyond the estimated unstart point. The total fueled
run time for the engine was set at 20 sec for Mach 6 con-
ditions and 15 sec for Mach 7 conditions. The run times

were limited by heat loads on the engine and on several

facility components.

Test Results

Test Facility_ Conditions

The RBCC engine test plan called for the facility to be

operated at a Mach 6 enthalpy (3000 °R) with the Mach 5

facility nozzle to simulate a Mach 6 flight condition. The

lower engine inlet entrance Mach number was used to
account for the bow shock of the vehicle on which the

engine would be installed in flight. The test plan similarly
called for the facility to be operated at a Mach 7 test gas

enthalpy (3900 °R) with the Mach 6 facility nozzle to

simulate a Mach 7 flight condition. The HTF as
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configured was able to achieve a test gas enthalpy

equivalent to Mach 6.6 (3500 °R) at 1065 psia total

pressure during this test series. The maximum test

condition previously demonstrated since the HTF

reactivation was completed in 1994 was 3000 °R total

temperature at 1050 psia total pressure. Modifications to
the facility will be required to achieve the full Mach 7 test
condition.

Table I summarizes the tests run at HTF during this

test program, including the engine fueling locations used for

each run. Lower temperatures and pressures were used on

initial runs to check out the facility and engine systems prior

to full test condition operation. The majority of data was

taken with the Mach 6 facility nozzle. Table I does not

include aborted tests where no useful engine data was
recorded.

Engine Aerodynamic Test Data and Comparison to
Subscale Inlet Aerodynamic Test Data

A series of aerodynamic studies of a 40 percent scale
model of the inlet region down to the end of the fuel blocks

were conducted previous to the fabrication of this full

scale RBCC engine to aid in the design and characterization
of the inlet. These tests were conducted at NASA Lewis

Research Center's lxl SWT over a test Mach number

range of 4 to 6. Details of this test program are contained

in Ref. 5. The test hardware configuration used for these

subscale tests is shown schematically in Fig. 10.

Figure 11 (a) shows a plot of this data for the Mach 5 case

overlaid upon a plot of the RBCC engine data for the same

conditions. The Mach numbers listed throughout this
section refer to the facility nozzle exit Mach number, as

opposed to the simulated flight Mach number. All pressure
distributions shown were measured along the top wall

(body side) of the engine on the engine centerline. A

scaled drawing of the HTF engine is included above the

plot to help correlate the pressure distributions with the

engine hardware. As shown, the zero position is referenced

to the leading edge of the inlet top wall. Distances are

shown linearly along the top wall of the engine uncorrected

for angle. Figure 11 (b) shows a similar plot for the Mach 6

case.The pressure spikes at 23 in. and 42 in. in the Mach 5

case are a result of the impingement on the top wall of the

reflected precompression plate bow shock. The Mach 6

case does not indicate the second shock impingement in

either data set. For both cases, the divergence between the

subscale and full scale pressure distributions beyond the

strut base is indicative of differences in geometry in that

area. The good agreement of these results helped to

validate the use of pitot survey data from the subscale tests

in determining flow distribution within the RBCC engine

and air capture by the inlet.

During the subscale inlet study, a series of tests were

run with the inlet back-pressured by a flow plug in

order to simulate the effect of high pressures in the

combustor/nozzle region upon the inlet. Figure 12 shows
a fueled static pressure distribution for the full scale

RBCC engine overlaid with a plot of the subscale inlet
back-pressured to the same combustor static pressure at

the 38 in. location. As shown, the subscale testing

accurately modeled the pressure profile in the inlet/

isolator region. This result gives further confidence to the

use of this subscale testing meth-odology for predicting
combustor/inlet interaction.

Comparison to CFD Analysis Results

A CFD analysis of the HTF engine at Mach 5 and 6

without fuel was conducted in parallel with the freejet test

activity. The details of this analysis are contained in

Ref. 6. Figure 13(a) shows aplot of the CFD analysis results

for the Mach 5 case overlaid with a plot of the HTF engine
data for the same conditions. Figure 13(b) shows a similar

plot for the Mach 6 case. The CFD results accurately predict

the pressure distribution within the engine, capturing the

position and magnitude of peaks and correctly predicting

the changes shown between the Mach 5 and Mach 6 cases.

This validation of the CFD analysis allows for the use of

the computational model to determine flow field details

not available from the subscale or full scale engine tests.

Summary

A series of 15 tests of an RBCC strutjet engine were
conducted at the NASA LeRC HTF. These tests further

demonstrated the operability of the HTF, including the
achievement of test conditions above those previously
demonstrated. These tests also demonstrated a successful

aerodynamic configuration for the HTF with a repre-

sentative RBCC class engine installed. The HTF was

upgraded to include heated and ambient hydrocarbon fuel

systems, a silane ignition system, a high pressure cooling

water system, and a high speed data system. Mach 5 and 6

unfueled and liquid JP- 10 fueled engine performance data

was taken and shown to agree well with subscale test data

and CFD analysis. Further testing should be conducted to

optimize fueled engine performance with JP-10 and to

demonstrate engine performance with rockets at sea-

level-static conditions and at high Mach number.
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TABLE I.--FACILITY CONDITIONS SUMMARY

Run Data ISiHJI-I 2 FOR. AFT Facility Average Nozzle
number number flow, JP-10 JP-10 nozzle, heater mass flow,

Y/N flow, i flow, Math temperature, Ibis
Y/N Y/N number °R

1 8 N N

2 10 Y Y

3 14 Y Y

4 15 Y Y

5 17 Y Y

6 18 Y Y

7 25 Y Y

8 32 Y Y

9 33 Y Y

10 34 Y Y

11 36 N N

12 38 Y Y

13 39 Y Y

14 40 Y Y

15 41 Y Y

N 5 3710 160

N 5 4060 190

N 6 4140 185

N 6 4080 185

Y 6 4090 190

Y 6 4120 t85

N 6 4120 185

Y 6 4260 185

Y 6 4280 190

Y 6 4320 190

N 6 4690 165

N 6 4690 170

Y 6 4670 170

Y 6 4630 170

Y 6 4690 170

Nozzle inlet Nozzle Steady Facility
total inlet total state test nozzle

temperature, pressure, time, exit static

°R psia sec pressure,

psia

2440 365 9 0.72

2770 515 16 0.71

2950 1065 20 0.64

2960 1065 20 0.64

2870 1065 15 0.63

2960 1065 20 0.64

2960 1065 17 0.58

3025 1065 18 0.60

2850 1065 18 0.63

2905 1065 23 0.57

3470 1075 3 0,55

3500 1065 15 0..56

3450 1065 15 0.56

3475 1065 17 0.58

3500 1065 15 0.58

_-- LH 2 Dewar
\

\
%

\
\

%

/--- GN 2 railcar

/
/-- Shop area
/

Test
chamber

GO 2

bottles --_

Steam

ejector train _-_ ..f
/ J

L__ Electric equipment i_om

3-MW graphite heater

Figure 1 .---Cutaway view of Hypersonic Tunnel Facility (HTF).
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\

\

Induction coils --_
\

Graphite susceptor --_

Silicon carbide tile shell

/-- Diameter, 6 ft
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t
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of
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30ft
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Nitrogen inlet --/

Figure 2.mNitrogen induction storage heater.

Distance from heater centerline, 32 ft 6
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/ (diam, 25 ft
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Film-cooling flange--_
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injection flanger _

Radiation \_ _
shutter valve_ \_

Hot

tee

_- Mixer

F- Adapter
flange

t
Water Water
in out

ft6

GN 2 induction

storage heater

Flow

il

I

L_ Nozzle (Mach
5, 6, or 7)

injection
system

mount

assembly
Diffuser

Adjustment, 4 ft 6 in.

Maximum free jet,
9ft 10in.

Figure 3.mHypersonic tunnel facility (HTF) hot train and test chamber.
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Vent _<_ [-_Vent t 1 500_;s ig )

GN 2 _ _ [_ _._ I_l _®_70 OF./

s uppl_ F_la/in_ _[_

®
(a)

GN2

purge _ Aft
JP-10

injectors

N _ Forward

I _'_ r JP-10

[_ injectors

(b)

Vent <_ GN2->_'_-_ GN2-_'_ I GN2-_--_--_

[t Von

_ Silane
injectors

Figure 4._Simplified HTF propellant system schematics. (a) JP-10. (b) Silane.

_":_ ; : :\'_\\_""" '' .............. 6.6Ain.
I / //A_

87 in.-

\
:4 29 in. _ _---15 in.----_ _ 43 in.

Figure 5.--Schematic of RBCC Strutjet engine with fuel injection blocks installed.

i

10 in.
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SiH4/H2

injectors

Forward

JP-IO injectors

/'

/

/

Rocket

combustion

chambers , "

Flow direction

Figure 6.---Side view of forward and aft fuel injection blocks with rockets.

Aft

JP-IO

injector

/ wedges

Metric
thrust mount -

Support
structure -_

Pre-compression plate _'

\

\
\

\
\

' Non-metric

(grounded)
frame

Figure 7.mlsometric sketch of RBCC Strutjet engine installation in the HTF without shrouding or facility

starting appliance.
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Figure 8.DRBCC Strutjet engine installed in the HTF.

Figure 9.DRBCC Strutjet engine with facility starting appliance installed.
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  com0r--ioo
•"- - 0.0 in. I.._ 11.2 in. " " -'_-- 27.96 in.

Sidewall removed

Mass

Interchangeable flow

struts . _--, plug

Cowl removed n

Figure 10.---40% scale RBCC Strutjet inlet model run in LeRC lxl SWT.

3°f 3°f

HTF engine --O-- HTF engine
25 --o-- lxl Model 25 --O-- lxl Model

20

8
o-15o21i_=15 _ D

0- 0-

1 1

0 I(a) I 0 (b) o._
--40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100

X (HTF Engine), in. X (HTF Engine), in.

Figure 11 .--Unfueled top wall centedine static pressure distributions of HTF full scale engine and
lxl sub-scale inlet model with scaled engine schematic shown above. (a) Mach 5. (b) Mach 6.
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80 _ HTF engine ©

70 --Q-- lxl Model
i I

60

°0I__j '3O

20

10

0 I
-40 -20 0 20 40 60 80 100

X (HTF Engine), in.

Figure 12.reFueled top wall centerline pressure

distribution of HTF full scale engine and

mechanically backpressured lxl sub-scale inlet

model with scaled engine schematic shown
above.

20
O
W

_.15
Q,.

10

30 -- 30 l--
--C-- HTF engine _ --O-- HTF engine

25- CFD 25 _- _ CFD
II

-- _@, g 20--

-- 10-- _

_,, , _,'_,
5 -- , 5 ,' "_

o'(a)_ L I L _ I o (b) I L _ I
-40 -20 0 20 40 60 80 100 -40 -20 0 20 40 60 80 100

X (HTF Engine), in. X (HTF Engine), in.

Figure 13.mUnfueled top wall centerline pressure distdbutions of HTF full scale engine and CFD anal-

ysis results with scaled engine schematic shown above. (a) Mach 5. (b) Mach 6.
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